Neurotrophin-3 antisense oligonucleotide attenuates nerve injury-induced Abeta-fibre sprouting.
نویسنده
چکیده
It is proposed that following peripheral nerve injury abnormal sprouting of Abeta-fibre primary afferent neurons in the spinal cord contributes to the allodynia that often occurs with such injury. Allodynia is characterized as pain due to a stimulus which is normally non-noxious. Our recent in vivo experiments show that intrathecal administration of neurotrophin-3 (NT-3), in normal animals, induces allodynia and sprouting of Abeta-fibres. In this study, we examine whether intrathecal administration of NT-3 antisense oligonucleotides (50 microM), via an osmotic pump for 14 days, attenuates nerve injury-induced sprouting and allodynia. The oligonucleotides used in this study were phosphorothioate modified and control experiments, using an ELISA, confirm that intrathecal administration of the antisense induces a significant decrease in NT-3 levels in the spinal cord. All surgery was conducted on anaesthetized Wistar rats (sodium pentobarbitone, i.p. 50 mg/kg). Consistent with previous studies, transganglionic labelling of Abeta-fibres with choleragenoid-horseradish peroxidase (C-HRP) shows that complete transection of the sciatic nerve induces an expansion of C-HRP label into lamina II of the spinal dorsal horn. Using image analysis, we find that intrathecal administration of NT-3 antisense attenuates the density of C-HRP labelling in lamina II in nerve injured animals. A NT-3 sense oligonucleotide (50 microM) has no effect. To test the effect of NT-3 antisense on allodynia, the nociceptive flexion reflex is examined, using an Ugo Basile Analgesymeter, in animals with partial sciatic nerve ligation. Intrathecal administration of 50 microM NT-3 antisense significantly attenuates nerve injury-induced allodynia, whereas the sense oligonucleotide has no effect. These results provide further evidence that endogenous NT-3 contributes to both nerve injury-induced Abeta-fibre sprouting and allodynia and demonstrates the potential of neurotrophin-3 antisense oligonucleotides as therapeutic agents for neuropathic pain.
منابع مشابه
A role for NT-3 in the hyperinnervation of neonatally wounded skin
Neurotrophin-3 (NT-3) is a target-derived neurotrophic factor that regulates sensory neuronal survival and growth. Here we report that NT-3 plays a critical permissive role in cutaneous sensory nerve sprouting that contributes to pain and sensitivity following skin wounding in young animals. Sensory terminal sprouting in neonatally wounded dermis and epidermis is accompanied by increased NT-3 t...
متن کاملAmyloid-β peptide induces oligodendrocyte death by activating the neutral sphingomyelinase–ceramide pathway
Amyloid-beta peptide (Abeta) accumulation in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neuronal degeneration. We have recently demonstrated that Abeta induced oligodendrocyte (OLG) apoptosis, suggesting a role in white matter pathology in AD. Here, we explore the molecular mechanisms involved in Abeta-induced OLG death, examining the potential r...
متن کاملThe cyclic AMP response element-binding protein antisense oligonucleotide induced anti-nociception and decreased the expression of KIF17 in spinal cord after peripheral nerve injury in mice.
BACKGROUNDS The cyclic AMP response element-binding protein (CREB) plays an important role in neuropathic pain. Kinesin superfamily motor protein 17 (KIF17) is involved in long-term memory formation. CREB could increase the level of KIF17 when activated by synaptic input. This study is to investigate the role and mechanism of CREB antisense oligonucleotide (ODN) in neuropathic pain induced by c...
متن کاملAmyloid-beta induces Smac release via AP-1/Bim activation in cerebral endothelial cells.
Insoluble fibrils of amyloid-beta peptide (Abeta) are the major component of senile and vascular plaques found in the brains of Alzheimer's disease (AD) patients. Abeta has been implicated in neuronal and vascular degeneration because of its toxicity to neurons and endothelial cells in vitro; some of these cells die with characteristic features of apoptosis. We used primary cultures of murine c...
متن کاملIntraventricular administration of antibodies to nerve growth factor retards kindling and blocks mossy fiber sprouting in adult rats.
Repeated subconvulsive electrical stimulation of certain areas of the forebrain leads to kindling, a progressive and permanent amplification of evoked epileptiform activity, which is a model for human temporal lobe epilepsy. Recent studies have shown that kindling induces synthesis of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) but not neurotrophin-3 (NT-3) in the hip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 885 1 شماره
صفحات -
تاریخ انتشار 2000